

Grounding & EMI Analysis Program For Conduit-Enclosed Power Circuits

Single Circuit Analysis Module User's Manual

Program Version: 3.03 – January 13, 2022 Copyright A. P. Meliopoulos : 1994 – 2022

Table of Contents

1. GEMI Historical Review	3
2. The GEMI User Interface	7
3. Allowable Conduit Length	10
4. Allowable Length versus Arc Voltage	11
5. Impedance versus Current	12
6. Magnetic Field and Permeability	13
7. Steel Conduit with Supplemental Ground Conductor	14
8. Allowable Circuit Length without Conduit	15
9. Fault Current at Source Power	16
Appendix A: Conductor Library	17
Appendix B: Steel Conduit Parameters	18
Appendix C: Aluminum Conduit Data	35
Appendix D: PVC Conduit Data	36
Appendix E: High Current Test Results	37

1. GEMI Historical Review

The GEMI (**G**rounding and **E**lectro-**M**agnetic Influence) program facilitates the design of steel conduit enclosed power circuits. The first three releases of this program (1994-1998) were compatible with the IBM PC with the DOS operating system. In 1999, the first Windows version was released (see Table 1.1) followed by two other releases in 2002 and 2004. A major software update was undertaken in 2018, which resulted in release of version 3.00 in 2020, and the present version (GEMI 3.03) released in January 2022.

Year Released	Version	OS
1994	SCA.1	
1996	GEMI.1	DOS
1998	GEMI 2.4	
1999	GEMI W 1.0	
2002	GEMI W 2.0	
2004	GEMI W 2.2	Windows
2020	GEMI W 3.0	
2022	GEMI W 3.03	

Table 1.1: GEMI Release History

GEMI is based on a mathematical model known as *Finite Element Analysis.* This method takes into account the electromagnetic fields developing in and around conduitenclosed circuits and evaluates the effectiveness of steel conduits in limiting EMI and providing a low impedance earth current return to fault currents.

The original GEMI model was developed in the late 1980s. The original model was validated by extensive laboratory and field tests performed in the early 1990's (See Figure 1.1).

Figure 1.1: Field Tests for the Validation of the Original GEMI Model

During the period 2018-2020 a new version of the GEMI model was developed, providing several enhancements over the original model including:

- Modeling of non-concentric arrangement effects
- Use of English or metric units.
- Automatic default settings based on NEC article 250.
- Conduit fill factor computation
- Detailed circuit cross-section view with EM field displays.
- Visualization of EM fields along any user selectable path.
- Increased accuracy and computational efficiency.

The new model was validated by conducting new field and laboratory testing (See Figures 1.2 and 1.3). The tests performed in December 2019 and additional tests in 2019. The detailed test report and verification can be obtained from STI. A summary of the results id given in Appendix D.

The new user interface developed for GEMI version 3.00 is described in the next section.

(a)

(b)

Figure 1.2: High Current Field Test Setup – December 2018

- (a) Test Setup Block Diagram
- (b) Test Setup View

(a)

(b)

- (a) Test Setup Block Diagram
- (b) Test Setup View

2. The GEMI User Interface

The GEMI main window is illustrated in Figure 2.1. It provides seven functions, which illustrate the performance of a single steel conduit enclosed power circuit:

- 1. Allowable Conduit Length
- 2. Allowable Length versus Arc Voltage
- 3. Impedance versus Current
- 4. Magnetic Field and Permeability
- 5. Conduit with Suppl. Ground Conductor
- 6. Allowable Circuit Length w/o Conduit
- 7. Fault Current at "Source Power"

The GEMI function is selected by clicking on the radio buttons located under the **Select Function** title (See Figure 2.1)

Figure 2.1: Function Selection Radio Buttons

The input data required for each function are entered in the blocks titled:

- Phase Conductor Parameters
- Ground Conductor Parameters
- Conduit Parameters, and
- System Parameters

The phase and ground conductor parameters include:

- Conductor type and size (selected from tables)
- Conductor x and y coordinates
- Temperature
- Insulation thickness

Coordinates, temperature and thickness are entered in English or metric units. Units are selected by radio buttons located under the "Units" title – See Figure 2.1). When the conductor coordinates or the insulation thickness is modified, the cross-section view drawing is automatically updated. The conductor positions can also be edited by moving the conductor images in the cross-section view using the mouse. *Note that conductors must not be overlapping. Furthermore, all conductors must be located inside the conduit*.

The circuit section view can be zoomed and panned using the mouse wheel and the right mouse button respectively. Conductor selection is made using the left mouse button. A left button double click on a conductor opens the conductor selection library window. The **Reset Zoom** button re-centers the image to the default position.

The <u>**Plot**</u> button opens a field plot window, which displays the computed magnetic field along a user specified path (See Figure 2.2). The path is indicated by a red line (or circle) appearing on the circuit cross-section display. The path can be modified using the mouse.

A number of radio buttons located on the field plot window allow the selection of the plotted quantity, namely:

- Magnetic scalar potential (A)
- Magnetic flux density (B)
- Magnetic field intensity (H)
- Current density (J)
- Relative permeability (µ)

Additional radio buttons select the plot path shape (straight line or circular), the plotted field component direction (parallel or perpendicular to the path), plot-scaling mode (automatic or fixed), and the plot interpolation mode (linear or none).

The seven GEMI computational functions are described in Sections 3 through 9.

Figure 2.2: Field Plot Window Example

3. Allowable Conduit Length

The Allowable Conduit Length function computes the maximum length of a steel conduit enclosed circuit that will ensure fault current is higher than a specified level. The required input data for this function are:

- Phase Conductor Type, Size and Temperature
- Conduit Type, Size and Temperature
- Operating Voltage
- Arc Voltage
- Fault Current

Figure 3.1: Allowable Conduit Length Function

4. Allowable Length versus Arc Voltage

The Allowable Length versus Arc Voltage function generates plots of the permissible circuit length as a function of arc voltage for three electric current levels

- Phase Conductor Type, Size and Temperature
- Conduit Type, Size and Temperature
- Operating Voltage
- Current Range of Interest

Figure 4.1: Allowable Length versus Arc Voltage Function

5. Impedance versus Current

The Impedance versus Current function generates tables of plots of the circuit impedance as a function of electric current.

- Phase Conductor Type, Size and Temperature
- Conduit Type, Size and Temperature
- Current Range of Interest

Figure 5.1: Impedance versus Current Function

6. Magnetic Field and Permeability

The Magnetic Field and Permeability function generates plots of the magnetic field intensity, magnetic flux density and relative permeability along a line starting at the phase conductor center and ending at the conduit external surface.

- Phase Conductor Type, Size and Temperature
- Conduit Type, Size and Temperature
- Electric Current

Figure 6.1: Magnetic Field and Permeability Function

7. Steel Conduit with Supplemental Ground Conductor

The Conduit with Supplemental Ground Conductor function computes the maximum length of a steel conduit enclosed circuit equipped with a supplemental ground conductor that will ensure fault current is higher than a specified level

- Phase Conductor Type, Size and Temperature
- Conduit Type, Size and Temperature
- Ground Conductor Type, Size and Temperature
- Operating Voltage
- Arc Voltage
- Fault Current

Figure 7.1: Steel Conduit with Supplemental Ground Conductor Function

8. Allowable Circuit Length without Conduit

The Allowable Circuit Length without Conduit function computes the maximum length of a circuit consisting of a phase and a ground conductor, which will ensure that the fault current is higher than a specified level.

Input Data:

Phase Conductor Type, Size and Temperature

- Ground Conductor Type, Size and Temperature
- Operating Voltage
- Arc Voltage
- Fault Current

Figure 8.1: Allowable Circuit Length without Conduit Function

9. Fault Current at Source Power

The Fault Current at "Source Power" function computes the fault current of a steel conduit enclosed circuit of a user specified length, assuming the source has infinite capacity and there is a fault at the end of the circuit with user defined fault parameters (arc voltage).

- Phase Conductor Type, Size and Temperature
- Conduit Type, Size and Temperature
- Circuit Length
- Operating Voltage
- Arc Voltage

GEMI - Single Circuit Analysis, 3.02 - 8/16/2020 y Print Help Options About Authentication				
GEMI - Fault Current at Source Po	ower M	Cont	rols	Close
Select Function				
 Allowable Conduit Length 				<i>M</i>
 Allowable Length vs Arc Voltage 	Plot			
 Impedance Versus Current 	Units			
 Magnetic Field & Permeability 	 Metric 	//		
 Conduit with Suppl. Ground Conductor 	 English 			
 Allowable Circuit Length Without Conduit 	Fill Factor			
Fault Current at "Source Power"	8.10 %			
	Reset Zoom	EM Grid 🗖	Color Grd	Equipotentials
Phase Conductor Parameters	Groun	d Conduc	tor Parame	ters —
Type COPPER		Туре 🛛	COPPER	
Size 3/0		Size	#6	
Temperature 75.00 C ⁰	Те	mperature [25.00	C0
Center X-Coordinate -0.012 inches	Center X-C	Coordinate	0.250	inches
Y-Coordinate -0.705 inches	Y-C	Coordinate	-0.527	inches
Insulation Thickness 0.059 inches	Insulation	Thickness	0.000	inches
Conduit Parameters	Sy	stem Para	ameters –	
Conduit Type EMT	Cond	uit Length	328.08	feet
Conduit Size 2INCH(53)				
NEC 250 Temperature 30.00 C ⁰	Operatin	g Voltage	120.00	Volts
Set defaults per NEC table 250.122	Ai	rc Voltage	50.00	Volts
Fault Current	566.85	Amp	oeres (Compute
			Analysis	Complete
come official circuit Analysis 2.07	9/46/2020 - 5		Analysis	Complete

Figure 9.1: Fault Current at Source Power Function

Appendix A: Conductor Library

The GEMI program includes a comprehensive conductor library which provides electrical parameters for a large number of commercially available conductors. The conductor selection window (shown below) opens by double click on a conductor image shown in the GEMI main window or by clicking on the conductor type entry field located in the phase conductor and ground conductor control groups.

Corp Print Heig Option: About Authentication Softing Cancel Accept 3 AAC_METRIC C Materials Impedance per CorpPER_CON STEEL_CON Materials 3 AAC_METRIC C English C Materials Impedance per CorpPER_CON STEEL_CON Impedance per CorpPER_CON STEEL_CON Impedance per CorpPER_CON STEEL_CON 9 ACSRAW C Explanation C Materials Impedance per CorpPER_CON STEEL_CON Impedance per CorpPER_CON STEEL_CON 10 ACSRAW Conductor Explanation Conductor Area Diameter (Corm) (nches) Conductor Area Diameter (Corp) Corp Corp Diameter (Corp) Corp Corp Diameter (Corp) Corp Corp Diameter (Corp) Corp Diameter (Corp) Corp Corp Diameter (Corp) Corp Corp Diam Corp Diameter (Corp) <														×
Select Conductor Z(f) Cancel Accept Type Table Softing Units Impedance per 6 Metric Materials 3 AAAC_METRIC 5 AACTW Figlish Organization Materials 6 AAC.WETRIC 7 ACAR 8 ACSR Organization	Copy Prir	Copy Print Help Options About Authentication												
Type Table Sorting Units Impedance per Materials 3 AAAC_METRIC - <t< td=""><td colspan="7">Select Conductor Z(f) Cancel Accept</td><td></td><td></td><td></td></t<>	Select Conductor Z(f) Cancel Accept													
3 AAAC METRIC • • by Cross-Sectional Area ○ Metric ○ English ○ Metric ○ COPPER_CON STEEL_CON 8 ACSR 9 ACSRAW ○ by Ampacity ○ by Ampacity STEEL_CON STEEL_CON STEEL_CON 11 ACSR GZ, METRIC • Diameter ○ Conductor Area Diameter OCmes ACRes XL XC Strands Ampacity Veight Sauge* 11 ACSR GZ, METRIC 11 ALUMINUM_METRIN 9 3#6CW 15.80 0.4324 1.900 1.937 0.7350 0.1190 // 7 90.00 330.0 English 13 ALUMINUM_METRIN 10 7#7CW 15.78 0.4324 1.900 1.937 0.7350 0.1190 // 7 90.00 330.0 English 14 ALUMOWE 11 3#6CW 15.81 0.7070 0.1121 // 7 14.27 524.9 English 15 ALUMOWE 13.7		– Type Table –––––	Gai	Jae r	orting		Unite	-	odonao nor	Mat	erials —		$\mathbf{\mathcal{H}}$	
4 AAC C Memory Memory Memory Memory COPPER_CON 5 AAC_METRIC Figlish © by Coss-Sectional Area © hy Coss-Sectional Area © English © 1000 ft STEEL_CON 9 ACSR O ACSR Conductor Weight Sauge* Ampacity Memory 9 ACSR O Conductor Area Diameter DCRes ACRes XL XC Strands Ampacity Weight Sauge* 10 ACSR 62/ METRIC 10 Area Diameter DCRes ACRes XL XC Strands Ampacity Weight Sauge* 11 ACSR 64// Name Conductor Area Diameter DCRes ACRes XL XC Strands Ampacity Weight Sauge* 13 ALUMINUM METRIC 10 7#CW 15.78 0.4324 1.900 1.937 0.7350 0.1190 /7 90.00 330.0 Eng 14 ALUMINUM Fire 3.58 0.4567 1.217 1.240 0.7070 <t< td=""><td>3</td><td>AAAC_METRIC</td><td>[c</td><td>Metric</td><td>by Nam</td><td>e</td><td>- Unite</td><td>s imp</td><td>edance per</td><td>0.000</td><td></td><td></td><td>\checkmark</td><td></td></t<>	3	AAAC_METRIC	[c	Metric	by Nam	e	- Unite	s imp	edance per	0.000			\checkmark	
5 AACTW C Biglish C 1000 ft STEEL_CON 6 AACA METRIC C by Resistance C by Ampacity 7 ACAR ACSR Conductors with Copper & Copper-Clad Steel Strands 10 ACSR GZ METRIC Name Conductor Area Diameter DCRes ACRes XL XC Strands Ampacity Weight Sauge* 11 ACSR GZ METRIC 9 3#6CW 12.80 0.3495 3.510 3.510 0.7210 0.1253 //.3 3.322.5 //.8 11.8 1.0 7.750 0.1253 //.3 3.322.5 //.8 1.1 1.0 7.750 0.1253 //.3 3.322.5 //.3 1.1 1.0 7.767 1.1 1.0 1.7 1.0 1.2 7.8 1.1 1.0 1.2 7.8 1.2 1.0 1.2 1.0 1.2 1.0 1.2 1.0 1.2 1.8 1.6 1.9 1.0 1.2 1.2 1.8 1.6 1.9 1.0 1.2 1.2 1.2 1.2 1.2 1.2 1.2 <	4	AAC		English (by Cros	s-Sectional	Area C I	Metric	mile	COPP	ER_CON		XX	\mathbf{I}
6 AAC, METRIC 7 ACSR 9 ACSRA 9 ACSRAW 10 ACSRAW 11 ACSR, GZ, METRIC 12 ALUMINUM_METRI 13 ALUMINUM_METRI 14 ALUMINUM_METRI 15 ALUMINUM_METRI 16 BOLTS 17 COPPER.WE 19 COPPER.WE 19 COPPER.WE 19 COPPER.METRIC 20 COPPER.WE 19 COPPER.WE 11 37#10CW/S12 40.40 0.5457 1.217 1.240 0.7070 0.1121 // 14.27 524.9 Eng 14 7#5CW/S12 40.40 0.5457 1.217 1.240 0.7070 0.1121 // 142.7 524.9 Eng 12 7#6CW/S12 40.40 0.5457	5	AACTW	U.	English	ි by Diar	neter	•	English O	1000 ft	STEE	L CON		\sim	
7 ACAR C by Ampacity 8 ACSRAW 10 ACSRRed Conductors with Copper & Copper-Clad Steel Strands 11 ACSR GZ_METRC Conductor Area Diameter DCRes ACRes XL XC Strands Ampacity Weight Sauge* 11 ACSR GZ_METRC Name (krm) (inches) (Ohms/mi) (Ohms/mi) (MOhms.mi) Ampacity Weight Sauge* 12 ALUMINUM_METRI 3 ALUMINUM_MIPIE 3 346CW 12.80 0.3495 3510 0.7210 0.1253 /3 332.2 178.1 Eng 13 ALUMINUM_PIPE 15.4 ALUMOWE 15.78 0.4324 1.900 1.937 0.7350 0.1190 /7 90.00 330.0 Eng 14 7H5CW 2.404 0.5457 1.217 1.240 0.7070 0.1121 /7 142.7 524.9 Eng 13 7-16CW7ST 2.404 0.5457 1.217 1.240 0.7070 0.1121 /7 142.7 524.9 Eng 14 <td>6</td> <td>AAC_METRIC</td> <td>•</td> <td>Both</td> <td>by Resi</td> <td>stance</td> <td>_</td> <td>_</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td>	6	AAC_METRIC	•	Both	by Resi	stance	_	_			_			
8 ACSR 9 ACSRAW 10 ACSREHS 11 ACSR_GZ_METRIC 12 ALUMINUM_METRI 13 ALUMINUM_METRI 14 ALUMINUM_METRI 15 ALUMINUM_METRI 16 BOLTS 17 COPPER 18 COPPER 19 COPPER 10 746CW 12.80 0.3495 3.510 0.7210 0.1253 //3 33.22 178.1 Eng 10 747CW 15.78 0.4392 2.780 2.780 0.7070 0.1219 //3 41.95 224.5 Eng 10 747CW 15.78 0.4366 1.507 1.536 0.7210 0.1155 /7 11.38 416.3 Eng 11 3#5CW 16.16 0.3920 2.780 2.780 0.7070 0.1121 /7 142.7 524.9 Eng 12 7#6CW 24.04 0.5457 1.217 1.240 0.7070 0.1121 /7 142.7 524.9 <	7	ACAR		0	by Amp	acity								
9 ACSRAW 10 ACSREMS 11 ACSR GZ_METRIC 2 ALUMINUM_METRI 3 ALUMINUM_METRI 13 ALUMINUM_METRI 14 ALUMINUM_PIPE 15 ALUMOVE 16 BOLTS 0 747 CW 15.78 0.4324 1.900 1.937 0.7350 0.1190 77 90.00 330.0 Eng 17 COPPER THOM 0 747 CW 15.78 0.4324 1.900 1.937 0.7350 0.1190 77 90.00 330.0 Eng 18 COPPER THOM 0 747 CW 15.78 0.4324 1.900 1.937 0.7350 0.1190 77 90.00 330.0 Eng 19 COPPER THOK 1.348 0.63320 2.780 0.7070 0.1121 77 142.7 52.49 Eng 19 COPPER_METRIC 20 COPPER_METRIC 20 20 20.771 1.000 1.200 0.7010 0.1121 77 142.7 52.	8	ACSR		- · · ·										
10 ACSREHS Conductor Area Diameter DCRes ACRes XL XC Strands Ampacity Weight 3auge 11 ALUMINUM METRI 9 3#6CW 12.80 0.3495 3.510 3.510 0.7210 0.1253 ///.33322 178.1 Eng 13 ALUMINUM PIPE 1 3.400000 1.578 0.4324 1.900 1.937 0.7350 0.1190 // 9.000 330.0 Eng 16 BOLTS 1 3#5CW 16.16 0.3920 2.780 2.7700 0.1125 // 11.3.8 416.3 Eng 17 COPPER 14 7#6CW 9.81 0.4866 1.507 1.536 0.7210 0.1125 // 114.27 524.9 Eng 19 COPPER METRIC 19#9CW 26.59 0.5721 1.000 1200 0.7010 0.1107 119 153.8 565.8 Eng 21 HS 37#10CW 43.30	9	ACSRAW		Conductors v	vith Cop	per & Copp	per-Clad Ste	el Strands				I		
11 ACSR_6Z_METRIC Name (kcm) (inches) (Ohms/mi) (Mohms/mi) (Moh	10	ACSREHS		Conductor	Area	Diameter	DCRes	ACRes	XL	XC	Strands	Ampacity	Weight	Gauge 📤
12 ALUMINUM METRiv ALUMINUM PIPE 9 3#6CW 12.80 0.3495 3.510 3.510 0.7210 0.1253 /3 33.22 178.1 Eng 13 ALUMINUM PIPE 15 ALUMOWE 15.78 0.4324 1.900 1.937 0.7350 0.1190 /7 90.00 330.0 Eng 16 BOLTS 13 #15.04 16.6 0.3920 2.780 0.7070 0.1219 /3 41.95 224.5 Eng 17 COPPER 13 7.16CWTST 24.04 0.5457 1.217 1.240 0.7070 0.1121 /7 142.7 524.9 Eng 18 COPPERME 15 19#9CW 26.59 0.5721 1.000 1.200 0.10107 119 153.8 66.8 Eng 16 19#9CW 33.58 0.6417 0.8864 0.9038 0.8870 0.1073 /19 193.8 713.5 Eng 21 EHS 19 19#1CW 36.64 0.4324 1.247 0.7350 0.1190 1/10 91.944.4 899.5<	11	ACSR_GZ_METRIC		Name	(kcm)	(inches)	(Ohms/mi)	(Ohms/mi)	(Ohms/mi)	(MOhms.mi)		(Amperes)	(lb/kf)	
13 ALUMINUM PIPE 14 ALUMINUM_PIPE 15 ALUMINUM_PIPE 16 BOLTS 17 COPPER 18 COPPER 19 COPPER METRIC 20 COPPER METRIC 21 FHS 22 HS 23 OP-GW 24 RAILORAD 25 SC_GZ_METRIC 26 STEEL 27 STEEL 30 ST_STEEL	12	ALUMINIUM_METRI	9	3#6CW	12.80	0.3495	3.510	3.510	0.7210	0.1253	/3	33.22	178.1	Eng
14 ALDMINUM_PIPE 15 ALUMOWE 16 BOLTS 17 COPPER 18 COPPERWE 19 COPPERMETRIC 20 COP_CLAD 21 EHS 22 HS 23 OP-GW 24 RALROAD 25 SC_GZ_METRIC 26 STEEL_STRIP 29 STL_PIPE 30 ST_STEEL 30 ST_STEEL	13	ALUMINUM	10	7#7CW	15.78	0.4324	1.900	1.937	0.7350	0.1190	17	90.00	330.0	Eng
15 ALUMOWE 16 BOLTS 17 COPPER 18 COPPERWE 19 COPPER METRIC 20 COP_CLAD 21 THSCW 24 RAILONOME 25 SC_GZ_METRIC 26 SESIMPEDANCE 27 STEEL 28 STEEL 20 ST_STEEL 20 ST_STEEL 21 19#6CW 22 HS 23 OP-GW 24 RAILROAD 25 SC_GZ_METRIC 26 SESIMPEDANCE 27 STEEL 28 STEEL 30 ST_STEEL 30	14	ALUMINUM_PIPE	11	3#5CW	16.16	0.3920	2.780	2.780	0.7070	0.1219	/3	41.95	224.5	Eng
16 BOLLS 17 COPPER 18 COPPERWE 19 COPPER_METRIC 20 COP_CLAD 21 EHS 23 OP-GW 24 HS 25 OF-GW 26 SESIMPEDANCE 27 STEEL 28 STEEL 29 STL_PIPE 30 ST_STEEL 30 ST	15	ALUMOWE	12	7#6CW	19.81	0.4866	1.507	1.536	0.7210	0.1155	17	113.8	416.3	Eng
17 COPPER 18 COPPER 19 COPPER METRIC 20 COP CLAD 21 EHS 22 HS 23 OP-GW 24 RAILROAD 25 SC_GZ_METRIC 26 SESIMPEDANCE 27 STEEL 28 STEEL_STRIP 29 STL_PIPE 30 ST_STEEL 30 ST_STEEL 30 ST_STEEL 30 ST_STEEL 30 ST_STEEL	16	BOLIS	13	7-16CW7ST	24.04	0.5457	1.217	1.240	0.7070	0.1121	17	142.7	524.9	Eng
18 COPPERNUE 19 COPPERNUE 19 COPPERNUE 20 COPPERNUE 21 EHS 22 HS 23 OP-GW 24 RAILROAD 25 SC_GZ_METRIC 26 SSESIMPEDANCE 27 STEEL 30 ST_STEEL 30 ST_STEEL 30 ST_STEEL 30 ST_STEEL 24 74000 25 SC_GZ_METRIC 27 STEEL 30 ST_STEEL 29 STL_PIPE 30 ST_STEEL 30 ST_STEEL 30 ST_STEEL 30 ST_STEEL 30 ST_STEEL 30 ST_STEEL 30 ST_STEEL 30	1/	COPPER	14	7#5CW	24.04	0.5457	1.217	1.240	0.7070	0.1121	17	142.7	524.9	Eng
19 COPPER_METRIC 20 COP_CLAD 21 EHS 22 HS 23 OP-GW 24 RAILROAD 25 SC_GZ_METRIC 26 SESIMPEDANCE 27 STEEL 28 STEEL 29 ST_STEEL 20 ST_STEEL 21 21 22 HS 23 OP-GW 24 RAILROAD 25 SC_GZ_METRIC 26 SESIMPEDANCE 27 STEEL 28 STEELL_STRIP 29 ST_STEEL 30	18	COPPERWE	15	19#9CW	26.59	0.5721	1.000	1.200	0.7010	0.1107	/19	153.8	565.8	Eng
20 COP_CLAD 17 10#11CW 36.64 0.4324 1.247 1.247 0.7350 0.1190 /10 91.29 284.0 Eng 21 EHS 18 37#10CW 40.60 0.7125 0.7278 0.7409 0.6740 0.1042 /37 237.1 879.0 Eng 23 OP-GW 20 37#0CW 51.19 0.8018 0.5773 0.5886 0.6600 0.1007 /37 298.95 Eng 24 RAILROAD 20 37#9CW 51.19 0.8018 0.5773 0.5886 0.6600 0.1007 /37 298.99 1108.0 Eng 25 SC GZ METRIC 22 37#8CW 64.65 0.8993 0.4577 0.4667 0.6460 0.09730 /37 376.7 1398.0 Eng 23 STEEL STL PIPE 30 ST_STEEL 1040CCS 75.80 0.5241 0.6694 0.4098 0.1133 /19 230.0 601.3 Eng 26 37#6CW 103.5 1.135 0.2879 0.2935 <	19	COPPER_METRIC	16	19#8CW	33.58	0.6417	0.8864	0.9038	0.6870	0.1073	/19	193.8	713.5	Eng
21 EHS 22 HS 23 OP-GW 24 RAILROAD 25 SC_GZ_METRIC 26 SESIMPEDANCE 27 STEEL 28 STEEL_STRIP 29 STL_PIPE 30 ST_STEEL 30 ST_STEEL	20	COP_CLAD	17	10#11CW	36.64	0.4324	1.247	1.247	0,7350	0.1190	/10	91,29	284.0	Eng
22 HS 23 OP-GW 24 RAILROAD 25 SC_GZ_METRIC 26 SESIMPEDANCE 27 STEEL_STRIP 29 ST_STEEL 30 ST_STEEL 30 ST_STEEL 30 ST_STEEL 30 ST_STEEL	21	EHS	18	37#10CW	40.60	0.7125	0.7278	0.7409	0.6740	0.1042	/37	237.1	879.0	Eng
23 0P-GW 20 37#9CW 51.19 0.8018 0.5773 0.5886 0.6600 0.1007 /37 298.9 1108.0 Eng 24 RALROAD 25 SC_GZ_METRIC 21 19#6CW 53.34 0.8100 0.5574 0.5683 0.6590 0.1004 /19 308.4 1134.0 Eng 26 SESIMPEDANCE 23 37#8CW 64.65 0.8993 0.4577 0.4667 0.6460 0.09730 /37 376.7 1398.0 Eng 27 STEEL STREL_STRIP 24 4/0CCS 75.80 0.5241 0.6694 0.6694 0.09700 /19 389.1 1430.0 Eng 28 STEEL_STRIP 25 37#7CW 81.38 1.009 0.3630 0.2327 0.6320 0.09390 /37 475.4 1762.0 Eng 26 37#6CW 103.5 1.135 0.2879 0.2935 0.6180 0.09040 /37 596.4 2222.0 Eng 27 37#5CW 130.3 1.234 0.2282 0.2327 0.6040	22	HS	19	19#7CW	42.33	0.7222	0,7030	0.7171	0.6730	0.1038	/19	244.4	899.5	Eng
24 RALCOAD 21 19#6CW 53.34 0.8100 0.5574 0.5683 0.6590 0.1004 /19 308.4 1134.0 Eng 25 SC_GZ_METRIC 22 37#8CW 64.65 0.8993 0.4577 0.4667 0.6460 0.09730 /37 376.7 1398.0 Eng 27 STEEL 19#5CW 67.21 0.9085 0.4420 0.4507 0.6460 0.09730 /37 376.7 1398.0 Eng 28 STEEL STE 19#5CW 67.21 0.9085 0.4420 0.4507 0.6460 0.09700 /19 389.1 1430.0 Eng 24 4/0CCS 75.80 0.5241 0.6694 0.4098 0.1133 /19 230.0 601.3 Eng 25 37#7CW 81.38 1.009 0.3630 0.2327 0.6320 0.09390 /37 475.4 1762.0 Eng 26 37#6CW 103.5 1.135 0.2879 0.2935 0.6180 0.09040 /37 596.4 2222.0 Eng 27	23	DAIL DOAD	20	37#9CW	51.19	0.8018	0.5773	0.5886	0.6600	0.1007	/37	298.9	1108.0	Eng
26 SC_02_METRIC 26 SSESIMPEDANCE 27 STEEL 28 STEEL_STRIP 29 STL_PIPE 30 ST_STEEL 27 STEEL 28 STEL_STRIP 29 STL_PIPE 30 ST_STEEL 27 37#6CW 19 20 29 STL_PIPE 30 ST_STEEL 27 37#5CW 103.5 1.135 0 ST_STEEL 29 STL_PIPE 30 ST_STEEL	24	RAILROAD	21	19#6CW	53.34	0.8100	0.5574	0.5683	0.6590	0.1004	/19	308.4	1134.0	Eng
20 SESIMPEDANCE 27 STEL 28 STEL_STRIP 29 STL_PIPE 30 ST_STEL 27 STEL 28 STEL_STRIP 29 STL_PIPE 30 ST_STEL 26 37#6CW 103.5 1.135 0.2879 0.2935 0.6180 0.09040 137 475.4 27 37#5CW 13.3 1.234 0.2820 0.2327 0.6180 0.09040 137 475.4 27 37#5CW 130.3 1.234 0.2822 0.2327 0.6040 0.08793 137 753.0 2802.0 Eng	20		22	37#8CW	64.65	0.8993	0.4577	0.4667	0.6460	0.09730	/37	376.7	1398.0	Eng
24 512EL STEEL_STRIP 28 STEEL_STRIP 29 STL_PIPE 30 ST_STEEL 27 37#5CW 30 ST_STEEL 27 37#5CW 30 ST_STEEL 30 ST_STEEL 30 ST_STEEL	20	SESIMPEDANCE	23	19#5CW	67.21	0.9085	0.4420	0.4507	0.6450	0.09700	/19	389.1	1430.0	Eng
29 STLEL_STRE 29 STLEPE 30 ST_STEEL 20 STLEPE 30 ST_STEEL 20 STLEPE 30 ST_STEEL 20 STLEPE 30 ST_STEEL 20 STLEPE 21 STHEPE 22 STLEPE 23 STHEPE 24 STLEPE 27 STHEPE 28 STLEPE 29 STLEPE 20 STLEPE 21 STHEPE 22 STLEPE 23 STHEPE 24 STLEPE	21		24	4/0CCS	75.80	0.5241	0.6694	0.6694	0.4098	0.1133	/19	230.0	601.3	Eng
29 SIL_PIPE 30 ST_STEEL 27 37#6CW 103.5 1.135 0.2879 0.2935 0.6180 0.09040 /37 596.4 2222.0 Eng 27 37#5CW 130.3 1.234 0.2282 0.2327 0.6040 0.08793 /37 753.0 2802.0 Eng_	20		25	37#7CW	81.38	1.009	0.3630	0.2327	0.6320	0.09390	/37	475.4	1762.0	Eng
30 S1_STEL 27 37#5CW 130.3 1.234 0.2282 0.2327 0.6040 0.08793 /37 753.0 2802.0 Eng. v<	29		26	37#6CW	103.5	1.135	0.2879	0.2935	0.6180	0.09040	/37	596.4	2222.0	Eng
Program GEML - Single Circuit Analysis 3 03 - 1/13/2022 - Form CONDUCTOR SELECT	30	SI_SIEEL	27	37#5CW	130.3	1.234	0.2282	0.2327	0.6040	0.08793	/37	753.0	2802.0	Eng -
Program GEML - Single Circuit Analysis, 3 03 - 1/13/2022 - Form CONDUCTOR, SELECT			·											
	1	•												

Figure 10.1: Conductor Selection Window

To select a conductor, first click on a "Conductor Type" listed in the conductor type column, then click on the desired conductor size listed on the table located to the right of the type table.

Note that the conductor size table can be sorted by name, cross-sectional area, diameter, resistance, and ampacity, using the radio buttons under the "Sorting" heading. Additional radio buttons (Units and Impedance headings) allow displaying the conductor parameters in metric or English units.

Appendix B: Steel Conduit Parameters

The conduit types and sizes included in the GEMI program library are listed in Tables B1 through B4. Furthermore, the steel permeability parameters for EMT, IMC, and GRC type steel conduits are listed. The measurement methodology used to obtain the permeability data is briefly described.

#	Size	Inner Diameter (inches)	Outer Diameter (inches)	Resistance (Ohms/mile)
1	1/2IN(16)	0.622	0.706	3.95360
2	3/4IN(21)	0.824	0.922	2.57750
3	1INCH(27)	1.049	1.163	1.74890
4	1-1/4IN(35)	1.380	1.510	1.17390
5	1-1/2IN(41)	1.610	1.740	1.01270
6	2INCH(53)	2.067	2.197	0.79560
7	2-1/2IN(63)	2.731	2.875	0.54630
8	3INCH(78)	3.356	3.500	0.44670
9	3-1/2IN(91)	3.834	4.000	0.33910
10	4INCH(103)	4.334	4.500	0.30070

Table B1: EMT Steel Conduit Data

#	Size	Inner Diameter (inches)	Outer Diameter (inches)	Resistance (Ohms/mile)
1	1/2IN(16)	0.632	0.840	1.69990
2	3/4IN(21)	0.836	1.050	1.28960
3	1INCH(27)	1.063	1.315	0.86850
4	1-1/4IN(35)	1.394	1.660	0.64070
5	1-1/2IN(41)	1.624	1.900	0.53510
6	2INCH(53)	2.083	2.375	0.39980
7	2-1/2IN(63)	2.489	2.875	0.25140
8	3INCH(78)	3.090	3.500	0.19260
9	3-1/2IN(91)	3.570	4.000	0.15990
10	4INCH(103)	4.050	4.500	0.13530
11	5INCH(129)	5.073	5.563	0.09990
12	6INCH(155)	6.093	6.625	0.07690

Table B2: GRC Steel Conduit Data

#	Size	Inner Diameter (inches)	Outer Diameter (inches)	Resistance (Ohms/mile)
1	1/2IN(16)	0.660	0.815	2.10190
2	3/4IN(21)	0.864	1.029	1.53850
3	1INCH(27)	1.105	1.290	1.08460
4	1-1/4IN(35)	1.448	1.637	0.81980
5	1-1/2IN(41)	1.683	1.882	0.67400
6	2INCH(53)	2.149	2.359	0.50750
7	2-1/2IN(63)	2.557	2.857	0.29590
8	3INCH(78)	3.176	3.476	0.24080
9	3-1/2IN(91)	3.671	3.971	0.20960
10	4INCH(103)	4.166	4.466	0.18560

Table B3: IMC Steel Conduit Data

#	Size	Inner Diameter (inches)	Outer Diameter (inches)	Resistance (Ohms/mile)
1	3/8IN	0.493	0.675	14.46474
2	1/2IN	0.622	0.840	9.64763
3	3/4IN	0.824	1.050	7.26017
4	1IN	0.828	1.060	4.88985
5	1-1/4IN	1.380	1.660	3.61238
6	1-1/2IN	1.610	1.900	3.02078
7	2IN	2.067	2.375	2.24748
8	2-1/2IN	2.469	2.875	1.41720
9	3IN	3.090	3.500	1.08370
10	4IN 4.026 4.500		4.500	0.76085
11	5IN	5.073	5.563	0.59000
12	6IN	6.093	6.625	0.45400

Table B4: Stainless Steel Conduit Data

Permeability Measurement

The permeability measurement for IMC, EMT and GRC materials was performed using samples of IMC, EMT and GRC conduits listed in Table B-5. Two windings were added on each sample, specifically, a primary winding distributed along the complete circumference, and a concentrated secondary winding. Figure B-1 illustrates the sample dimensions and the added windings. The primary winding was driven by a sinusoidal voltage source. The primary RMS winding current and the secondary RMS winding voltage were measured at various amplitudes, and the permeability parameters were derived from these measurements.

#	Material	Size	Outside Diameter (d - inches)	Width (w - inches)	Height (h - inches)	Weight (g)	Turns Prim/Sec
1	EMT	2"	2.20"	0.068"	2.25"	123 g	84/20
2	IMC	2"	2.36"	0.111"	1.83"	174 g	88/20
3	GRC	2"	2.38"	0.145"	2.03"	255 g	90/20
4	Stainless Steel	1"	1.33"	0.138"	1.347"	110 g	44

Table B-5: Conduit Sample Dimensions

Figure B-1: Conduit Samples

The RMS V-I measurement data for IMC, EMT and GRC materials are listed in Tables R-3, R-4 nad R-5 respectively. Note that the Tables include:

- Primary winding current (column 2)
- Secondary winding voltage (column 3)
- Phase angle between voltage and current (column 4)
- Computed magnetic field intensity H (column 5)
- Computed magnetic flux density B (column 6)
- Computed relative permeability (column 7)

Note that the measurement of the V/I phase angle makes possible the separation of the hysteresis effect from the magnetic saturation effect. The magnetic field intensity H is computed from the measured RMS current using the formula:

$$H_{RMS} = \frac{N_1}{\pi (d-a)} I_{RMS} \sin(\theta)$$

where *a* and *d* are defined in the Figure below, N_1 is the number of primary turns and θ is the phase angle between voltage and current. Note that the factor **sin(\theta)** in the above equation removes the hysteresis effect from the permeability saturation model.

Figure B-2: Conduit Sample Geometric Data

The magnetic flux density B is computed from the measured RMS voltage using the formula:

$$B = \frac{V}{N_2 a b \omega}$$

where *a* and *d* are defined in the above Figure, N_2 is the number of secondary turns and ω is the excitation frequency.

Note also that:

$$v(t) = \frac{d}{dt}\lambda(t) = \frac{d}{dt}\frac{ab\mu_0\mu_{rel}N_1N_2i(t)}{\pi(d-a)}$$

Assuming sinusoidal conditions, and converting to the frequency domain:

$$V = \frac{\omega a b \mu_0 \mu_{rel} N_1 N_2 I}{\pi (d-a)}$$

Or:

$$\mu_{rel} = \frac{\pi (d-a) \mathbf{V}}{\omega a b \mu_0 N_1 N_2 I}$$

The above formula can be used to compute the material permeability before saturation onset. Subsequently, multiple measurements were taken by increasing the excitation current to levels that ensured magnetic material saturation. The collected data were analyzed using a time domain model. The saturation curves were derived by minimizing the RMS error between measurement and model results. The saturation curves were expressed in terms of piece-wise linear/quadratic functions as illustrated in Figure A-3.

Figures A-4, through A-15 provide plots of the measurement data for IMC, EMT and GRC materials.

Figure B-3: B versus H function definition

File #	Current (Arms)	Voltage (Vrms)	Phase (Degrees)	H At/m	B Tesla	µ rel
0	0.0000	0.0000	66.0000	0.00	0.00	N/A
1	0.2620	0.0358	49.6800	97.96	0.04	294.59
2	0.3660	0.0588	44.4000	125.58	0.06	376.96
3	0.5110	0.1020	38.1400	154.76	0.10	530.69
4	0.7520	0.1960	31.0200	190.04	0.20	830.44
5	0.8560	0.2300	30.1500	210.84	0.23	878.37
6	1.0610	0.2910	29.2000	253.84	0.29	923.08
7	1.2390	0.3370	28.9500	294.11	0.34	922.64
8	1.5570	0.4090	29.0500	370.76	0.41	888.26
9	1.7820	0.4540	29.2000	426.33	0.46	857.46
10	2.0810	0.5090	29.4400	501.59	0.52	817.09
11	2.2400	0.5370	29.4900	540.75	0.54	799.61
12	2.6300	0.6010	29.8400	641.75	0.61	754.08
13	2.8140	0.6300	29.9700	689.36	0.64	735.87
14	3.0920	0.6720	30.1500	761.58	0.68	710.49
15	3.5150	0.7340	30.4100	872.53	0.74	677.36
16	3.9600	0.7910	30.6700	990.58	0.80	642.97
17	4.4610	0.8540	31.0500	1128.36	0.86	609.42
18	4.9110	0.9110	31.6700	1264.43	0.92	580.13
18a	5.5380	1.0000	34.3700	1533.163	1.012	525.189
19	6.0180	1.0400	36.5000	1755.43	1.05	477.04
19a	6.5640	1.0920	39.4900	2047.07	1.10	429.53
20	7.0690	1.1190	41.5100	2297.49	1.13	392.18
21	8.2680	1.1790	46.2800	2930.34	1.19	323.97
22	9.1250	1.2160	48.8900	3371.56	1.23	290.41
23	10.2700	1.2600	51.0000	3913.97	1.27	259.21
24	12.0900	1.3060	52.9300	4730.63	1.32	222.29

Table B-6: RMS Measurement Data for IMC Material

File #	Current (Arms)	Voltage (Vrms)	Phase (Degrees)	H At/m	B Tesla	µ rel
0	0.136	0.014	66.40	58.61	0.02	211.74
0a	0.229	0.030	58.73	92.05	0.03	291.38
0b	0.292	0.045	54.15	111.30	0.05	355.74
0c	0.400	0.077	46.63	136.74	0.09	501.18
1	0.506	0.122	40.18	153.53	0.14	706.89
1a	0.748	0.220	34.50	199.24	0.25	982.26
2	1.012	0.329	32.45	255.35	0.37	1146.11
3	1.542	0.496	33.01	395.05	0.55	1116.88
4	2.029	0.619	35.83	558.55	0.69	985.83
5	2.527	0.716	40.97	779.16	0.80	817.45
6	3.040	0.779	46.19	1031.66	0.87	671.70
8	3.512	0.813	49.66	1258.85	0.91	574.50
9	4.082	0.849	52.57	1524.36	0.95	495.44
10	4.465	0.871	54.55	1710.48	0.97	452.97
11	4.950	0.895	56.47	1940.45	1.00	410.29
12	5.464	0.919	58.00	2179.08	1.03	375.16
13	5.953	0.938	59.23	2405.39	1.05	346.89
14	7.212	0.991	61.57	2982.52	1.11	295.57
15	8.251	1.032	63.04	3458.47	1.15	265.44
16	9.002	1.061	63.98	3804.23	1.19	248.10
17	10.260	1.106	65.30	4383.47	1.24	224.45

 Table B-7: RMS Measurement Data for EMT Material

File #	Current (Arms)	Voltage (Vrms)	Phase (Degrees)	H At/m	B Tesla	µ rel
0	0.0000	0.0000	55.0000	0.00	0.00	
1	0.2640	0.0419	45.0900	94.35	0.03	246.96
2	0.3580	0.0626	41.5200	119.75	0.04	290.76
3	0.5100	0.1040	36.2600	152.22	0.07	380.04
4	0.7470	0.1860	30.1800	189.50	0.13	545.95
5	1.0270	0.2850	26.7200	233.02	0.20	680.30
6	1.2270	0.3490	25.7200	268.71	0.24	722.44
7	1.5050	0.4280	25.1400	322.65	0.30	737.86
8	1.7190	0.4820	25.0900	367.84	0.34	728.87
9	2.0590	0.5590	25.2600	443.38	0.39	701.28
10	2.5560	0.6570	25.7200	559.75	0.46	652.87
11	3.0320	0.7400	26.1500	674.32	0.52	610.41
12	3.4910	0.8140	26.5200	786.60	0.57	575.61
13	3.9850	0.8880	26.9000	909.83	0.62	542.89
14	4.6180	0.9760	27.3400	1070.28	0.68	507.24
15	5.0000	1.0260	27.5400	1166.63	0.72	489.19
16	5.9420	1.1410	27.9900	1407.26	0.80	450.99
17	7.1460	1.2730	28.5100	1721.23	0.89	411.38
18	8.1630	1.3700	30.0000	2059.65	0.96	369.99
19	10.260	1.575	33.38	2848.61	1.10	307.54
20	12.280	1.706	40.27	4005.59	1.19	236.90

 Table B-8: RMS Measurement Data for GRC Material

Figure B-4: RMS Voltage vs Current for IMC 2" Sample

Figure B-5: V-I Phase Angle vs Current for IMC 2" Sample

Figure B-6: B vs H for IMC 2" Sample

Figure B-7: PWLQ model of B vs H for IMC Material

Figure B-8: RMS Voltage vs Current for EMT 2" Sample

Figure B-9: V-I Phase Angle vs Current for EMT 2" Sample

Figure B-10: B vs H for EMT 2" Sample

Figure B-11: PWLQ model of B vs H for EMT Material

Figure B-12: RMS Voltage vs Current for GRC 2" Sample

Figure B-13: V-I Phase Angle vs Current for GRC 2" Sample

Figure B-14: B vs H for GRC 2" Sample

Figure B-15: PWLQ model of B vs H for GRC Material

Appendix C: Aluminum Conduit Data

The parameters of the aluminum conduit sizes included in the GEMI program library are listed in Table C1.

#	Size	Inner Diameter (inches)	Outer Diameter (inches)	Resistance (Ohms/mile)
1	1/2INCH(16)	0.622	0.840	0.4010
2	3/4INCH(21)	0.824	1.050	0.3018
3	1INCH(27)	1.049	1.315	0.2033
4	1-1/4IN(35)	1.380	1.660	0.1502
5	1-1/2IN(41)	1.610	1.900	0.1256
6	2INCH(53)	2.067	2.375	0.0934
7	2-1/2IN(63)	2.469	2.875	0.0589
8	3INCH(78)	3.068	3.500	0.0450
9	3-1/2IN(91)	3.548	4.000	0.0375
10	4INCH(103)	4.026	4.500	0.0316
11	5INCH(128)	5.047	5.563	0.0233
12	6INCH(155)	6.065	6.625	0.0180

Table C1: Aluminum Conduit Data

Appendix D: PVC Conduit Data

The parameters of the PVC conduit sizes included in the GEMI program library are listed in Table D1.

#	Size	Inner Diameter (inches)	Outer Diameter (inches)
1	1/2INCH(16)	0.622	0.840
2	3/4INCH(21)	0.824	1.050
3	1INCH(27)	1.049	1.315
4	1-1/4IN(35)	1.380	1.660
5	1-1/2IN(41)	1.610	1.900
6	2INCH(53)	2.067	2.375
7	2-1/2IN(63)	2.469	2.875
8	3INCH(78)	3.068	3.500
9	3-1/2IN(91)	3.548	4.000
10	4INCH(103)	4.026	4.500
11	5INCH(128)	5.047	5.563
12	6INCH(155)	6.065	6.625

Table D1: PVC Conduit Data

Appendix E: High Current Test Results

This Appendix summarizes the results of the high current conduit impedance measurements.

#	Configuration	Current (A)	Voltage (V)	Impedance Magnitude (mΩ)	Impedance Phase (Degrees)	Temperature (ºC)
1		345	3.159	9.159	52.2	20.17
2	P-N, C-G	1336	14.36	10.74	56.5	20.30
3		1981	25.71	12.98	60.37	20.58
4	DNCC	1429	12.87	8.999	51.79	22.94
5	F-N-C-G	2300	25.27	10.99	55.59	24.19
6	D.O.O.	1404	20.83	14.84	43.13	30.34
7	F-C-G	1763	26.24	14.89	43.36	30.74

Table E-1: 3" EMT Conduit Tests – 500 kcm Phase & Neutral Conductor

#	Configuration	Voltage (V)	Current (A)	Impedance Magnitude (mΩ)	Impedance Phase (Degrees)	Temperature (ºC)
1		3.461	385.7	8.974	52.90	20.43
2	P-N, C-G	14.36	1413	10.16	56.54	20.43
3		25.81	2050	12.59	61.30	20.45
4	DNCC	12.10	1420	8.515	56.91	20.58
5	P-N-C-G	25.26	2299	10.98	61.08	20.72
6		4.734	354.3	13.36	41.48	21.93
7	P-C-G	20.79	1395	14.89	45.49	22.08
8		26.33	1734	15.18	44.98	22.47
9		3.086	355.0	8.695	53.15	24.23
10	P-N-C (NG)	14.27	1428	9.985	56.10	24.33
11		25.39	2161	11.75	58.20	24.43
12		12.89	350.3	36.78	29.43	24.99
13	P-C (NG,FN)	27.65	1041.8	26.55	32.02	25.42
14		21.14	701.3	30.15	31.15	26.35

Table E-2: 3" GRC Conduit Tests – 500 kcm Phase & Neutral Conductor

#	Configuration	Voltage (V)	Current (A)	Impedance Magnitude (mΩ)	Impedance Phase (Degrees)	Temperature (ºC)
1		3.308	368.1	8.987	55.17	20.96
2	P-N, C-G	14.93	1448	10.31	55.59	24.18
3		25.40	2029	12.51	60.48	24.26
4	DNCC	11.39	1387	8.209	56.44	23.13
5	P-N-C-G	24.88	2302	10.81	61.07	23.47
6		4.629	361.2	12.81	46.70	20.97
7	P-C-G	20.60	1357	15.17	47.39	21.29
8		26.16	1720	15.20	47.08	21.77
9		2.955	357.6	8.266	51.57	25.04
10	P-N-C (NG)	13.54	1394	9.707	55.33	24.52
11		25.10	2160	11.62	58.02	24.66
12		12.76	361.9	35.25	34.73	26.26
13	P-C (NG,FN)	20.76	691.7	30.01	35.09	29.62
14		27.54	1053.9	26.13	35.93	27.79

 Table E-3: 3" IMC Conduit Tests – 500 kcm Phase & Neutral Conductor

#	Configuration	Voltage (V)	Current (A)	Impedance Magnitude (mΩ)	Impedance Phase (Degrees)	Temperature (ºC)
1		2.668	351	7.599	49.02	21.29
2	P-N, C-G	11.68	1431	8.154	46.46	27.79
3		24.24	2489	9.738	52.29	28.05
4	DNCC	9.793	1389	7.046	48.31	26.68
5	P-N-C-G	22.02	2574	8.552	53.68	27.00
6		4.028	344.9	11.68	35.07	21.31
7	P-C-G	17.34	1460	11.87	32.87	21.74
8		25.54	2009	12.71	29.43	24.56
9		2.513	339.4	7.406	43.67	29.09
10	P-N-C (NG)	10.90	1416	7.696	44.95	29.11
11	1	23.98	2597	9.233	50.12	29.26
12		9.574	397	24.12	7.478	29.74
13		27.43	1238	22.15	8.363	30.08

Table E-4: 3" STAINLESS Conduit Tests – 500 kcm Phase & Neutral Conductor

Comparison with Model

The WinIGS simulated conduit self-impedance for 100 ft conduit is 16.55 m Ω . Adding the estimated coupling impedance (at 0.56 m Ω per coupling x 9 couplings) yields:

 $Z_{model} = 16.55 + 9 \times 0.56 \text{ m}\Omega = 21.59 \text{ m}\Omega$

The above is consistent with the measured value range of $22 - 24 \text{ m}\Omega$.

WinIGS/GEMI Simulation Result

#	Configuration	Voltage (V)	Current (A)	Impedance Magnitude (mΩ)	Impedance Phase (Degrees)	Temperature (ºC)
1		3.223	201.5	16.00	30.5	20.85
2	P-N, C-G	14.52	793.6	18.30	39.56	20.91
3		26.71	1219.4	21.91	38.03	30.94
4		12.61	806.2	15.63	37.47	22.29
5	P-N-C-G	26.35	1423.0	18.52	42.30	27.86
6		6.571	205.6	31.96	23.72	22.95
7	P-C-G	23.42	789.6	29.67	27.68	25.90
8		27.52	968.4	28.42	26.92	25.44
9		3.231	207.1	15.61	28.72	41.13
10	P-N-C (NG)	14.27	1428.9	9.984	56.09	24.33
11		26.48	1374.7	19.27	38.27	32.92
12		12.48	212.4	58.76	29.95	41.71
13	P-C (NG,FN)	28.06	696.2	40.29	29.93	41.66
14		28.00	681.7	41.08	27.37	38.43

 Table E-5: 2" EMT Conduit Tests – 3/0 Copper Phase & Neutral Conductor

#	Configuration	Voltage (V)	Current (A)	Impedance Magnitude (mΩ)	Impedance Phase (Degrees)	Temperature (ºC)
1		3.288	204.9	16.05	31.26	20.33
2	P-N, C-G	14.00	800.8	17.48	36.94	20.35
3		26.65	1306.8	20.39	39.56	25.05
4	BNCC	12.14	788.6	15.39	35.68	20.55
5	P-N-C-G	26.35	1477.4	17.84	42.61	24.39
6		6.643	201.3	33.01	20.13	21.12
7	P-C-G	23.98	766.1	31.30	24.09	21.48
8		27.64	893.0	30.95	24.05	23.33
9		3.157	205.0	15.40	30.93	31.69
10	P-N-C (NG)	13.78	798.6	17.26	36.03	31.54
11		26.55	1431.3	18.55	38.59	26.26
12		12.47	214.8	58.07	26.07	32.02
13	P-C (NG,FN)	28.11	674.0	41.70	27.59	30.41
14		28.25	690.1	40.94	24.77	27.12

Table E-6: 2" GRC Conduit Tests – 3/0 Copper Phase & Neutral Conductor

#	Configuration	Voltage (V)	Current (A)	Impedance Magnitude (mΩ)	Impedance Phase (Degrees)	Temperature (ºC)
1		3.116	198.0	15.73	29.66	21.24
2	P-N, C-G	14.55	796.3	18.28	39.95	21.24
3		26.43	1273.3	20.76	39.95	27.79
4	DNCC	12.23	795.9	15.37	36.43	21.64
5	P-N-C-G	26.11	1458.5	17.90	41.65	27.11
6		6.580	195.7	33.63	24.66	22.39
7	P-C-G	25.68	780.02	32.92	25.07	23.49
8		27.34	917.7	29.79	27.66	27.11
9		3.108	202.9	15.32	28.87	36.74
10	P-N-C (NG)	13.93	797.6	17.47	36.70	36.23
11		26.27	1358.3	19.34	37.15	29.07
12		11.65	201.3	57.90	32.40	35.85
13	P-C (NG,FN)	27.92	655.2	42.61	29.92	36.16
14		27.78	650.3	42.72	26.32	32.76

 Table E-7: 2" IMC Conduit Tests – 3/0 Copper Phase & Neutral Conductor

#	Configuration	Voltage (V)	Current (A)	Impedance Magnitude (mΩ)	Impedance Phase (Degrees)	Temperature (ºC)
1		2.291	42.74	53.62	9.839	21.16
2	P-N, C-G	9.420	172.4	54.63	9.958	21.13
3		24.87	374.8	66.35	9.879	21.52
4	BNCC	7.630	155.2	49.16	10.16	29.78
5	P-N-C-G	27.12	466.4	58.15	9.479	33.84
6		18.32	229.4	79.87	12.73	46.21
7	P-C-G	28.49	337.6	84.39	12.85	47.91
8		28.37	390.07	72.60	13.40	37.68
9		3.846	82.83	46.45	11.95	22.84
10	P-N-C (NG)	11.50	233.2	49.34	11.74	22.92
11		23.79	453.2	52.51	12.92	23.37
12		9.859	82.27	120.0	24.55	27.05
13	P-C (NG,FN)	22.45	237.6	94.50	23.08	28.61
14		28.69	311.4	92.13	21.10	33.49

 Table E-8: 1" EMT Conduit Tests – #4 Copper Phase & Neutral Conductor

#	Configuration	Voltage (V)	Current (A)	Impedance Magnitude (mΩ)	Impedance Phase (Degrees)	Temperature (ºC)
1		4.626	83.89	55.14	9.426	20.25
2	P-N, C-G	13.35	235.3	56.74	10.32	20.27
3		27.91	411.5	67.83	10.84	30.76
4	BNCC	10.74	237.7	45.19	11.02	20.62
5	F-IN-C-G	24.50	453.7	54.01	11.77	27.19
6		5.737	83.81	68.45	12.03	21.69
7	P-C-G	16.32	237.0	68.88	12.52	21.75
8		28.08	385.8	72.78	13.51	23.18
9		4.608	87.26	52.81	10.44	35.53
10	P-N-C (NG)	13.09	240.1	54.53	10.62	35.07
11		26.72	464.1	57.58	12.60	34.18
12		11.08	82.54	134.0	20.99	36.58
13	P-C (NG,FN)	24.46	236.7	103.0	21.04	36.36
14		28.45	293.5	96.92	20.80	35.63

Table E-9: 1" GRC Conduit Tests – #4 Copper Phase & Neutral Conductor

#	Configuration	Voltage (V)	Current (A)	Impedance Magnitude (mΩ)	Impedance Phase (Degrees)	Temperature (ºC)
1		4.785	86.51	55.31	9.665	20.82
2	P-N, C-G	13.40	233.9	57.29	10.37	21.07
3		27.69	416.6	66.47	11.07	34.19
4	DNCC	10.30	232.1	44.37	11.38	21.73
5	P-N-C-G	24.48	473.4	51.72	12.50	31.31
6		4.962	80.67	61.51	14.53	22.40
7	P-C-G	16.40	234.9	69.82	13.16	22.66
8		28.33	357.8	79.16	12.94	26.32
9		3.823	78.39	48.78	11.54	35.51
10	P-N-C (NG)	12.65	239.3	52.88	11.59	34.94
11		26.79	485.7	55.15	13.38	35.80
12		9.723	80.61	121.0	22.80	36.63
13	P-C (NG,FN)	24.77	240.7	103.0	21.04	36.02
14		28.44	291.3	97.63	21.23	36.63

 Table E-10: 1" IMC Conduit Tests – #4 Copper Phase & Neutral Conductor

#	Configuration	Voltage (V)	Current (A)	Impedance Magnitude (mΩ)	Impedance Phase (Degrees)	Temperature (ºC)
1		4.549	82.47	55.16	7.543	21.31
2	P-N, C-G	13.45	237.6	56.61	7.670	21.32
3		28.06	428.9	65.42	7.627	27.07
4	DNCC	11.00	239.9	45.87	7.354	21.77
5	P-N-C-G	23.87	473.4	50.43	7.561	25.17
6		6.367	84.03	75.77	5.090	22.13
7	P-C-G	16.88	234.0	75.12	4.860	22.33
8		28.23	385.3	73.26	4.683	23.65
9		4.711	85.59	55.04	6.499	32.48
10	P-N-C (NG)	12.79	233.9	54.69	6.432	32.14
11		26.62	465.7	57.16	6.867	29.82
12		11.53	79.27	146.0	1.715	32.75
13	P-C (NG,FN)	19.59	150.2	130.0	1.982	32.78
14		28.65	232.2	123.0	2.116	31.49

Table E-11: 1" Stainless Steel Conduit Tests – #4 Copper Phase & Neutral Conductor

Comparison with Model

The WinIGS simulated conduit self-impedance for 100 ft. conduit is 16.55 m Ω . Adding the estimated coupling impedance (at 0.56 m Ω per coupling x 9 couplings) yields:

 $Z_{model} = 102.1 + 9 \times 1.26 \text{ m}\Omega = 113.45 \text{ m}\Omega$

The above is near the measured value range of $123 - 146 \text{ m}\Omega$.

WinIGS/GEMI Simulation Result

#	Configuration	Voltage (V)	Current (A)	Impedance Magnitude (mΩ)	Impedance Phase (Degrees)	Temperature (ºC)
1		5.411	36.63	137.0	3.494	20.63
2	P-N, C-G	21.34	147.3	145.0	4.145	20.84
3		27.41	177.1	155.0	4.283	22.10
4	– P-N-C-G	18.07	156.9	115.0	5.770	26.03
5		18.07	156.9	115.0	5.770	26.03
6	P-C-G	21.34	144.4	148.0	9.385	38.45
7		27.34	180.6	151.0	9.299	41.40
8	– P-C-IG	19.67	142.9	138.0	7.299	29.91
9		27.00	194.1	139.0	7.560	35.08

 Table E-12: ¾" EMT Conduit Tests – #8 Copper Phase & Neutral Conductor

#	Configuration	Voltage (V)	Current (A)	Impedance Magnitude (mΩ)	Impedance Phase (Degrees)	Temperature (ºC)
1		5.831	43.05	135.0	3.906	19.87
2	P-N, C-G	21.99	151.9	145.0	4.467	19.91
3		28.13	183.2	154.0	4.553	20.23
4	BNCC	17.21	159.9	108.0	5.736	22.69
5	P-N-C-G	26.33	243.1	108.0	6.251	23.79
6		5.976	44.68	134.0	8.352	24.85
7	P-C-G	21.38	162.2	132.0	8.639	25.10
8		28.19	212.0	133.0	8.819	25.63
9		5.014	43.52	115.0	7.168	25.99
10	P-N-C (NG)	18.86	156.8	120.0	6.982	25.84
11		27.90	220.2	127.0	7.449	26.12
12		8.781	43.35	203.0	17.15	27.51
13	P-C (NG,FN)	25.35	152.1	167.0	16.44	27.87
14		28.40	174.1	163.0	16.17	28.65

 Table E-13: ¾" GRC Conduit Tests – #8 Copper Phase & Neutral Conductor

#	Configuration	Voltage (V)	Current (A)	Impedance Magnitude (mΩ)	Impedance Phase (Degrees)	Temperature (ºC)
1		5.656	41.22	137.0	3.752	20.66
2	P-N, C-G	22.28	152.7	146.0	4.433	20.87
3		28.06	187.8	149.0	4.848	21.39
4	DNCC	16.57	153.1	108.0	5.981	24.11
5	F-N-C-G	27.79	249.9	111.0	6.548	25.40
6		5.296	42.44	125.0	10.56	26.86
7	P-C-G	21.66	163.9	132.0	9.463	27.03
8		28.17	208.5	135.0	9.386	27.38
9		4.654	42.85	109.0	8.635	27.16
10	P-N-C (NG)	18.78	158.9	118.0	7.797	26.92
11		24.94	203.7	122.0	7.919	26.91
12		8.155	42.51	192.0	20.60	27.92
13		25.30	152.1	166.0	17.72	28.25
14		28.39	174.4	163.0	17.28	28.70

 Table E-14: ¾" IMC Conduit Tests – #8 Copper Phase & Neutral Conductor

Test Configuration	(a)	(b)	(c)
Injected Current	165.4 A	218.6 A	142.7 A
Voltage Along Cable	0.295 V	0.592 V	0.207
Voltage Along Conduit	1.185 V	0.329 V	1.078
Total Circuit Voltage	1.443 V	_	_
Conduit Self-Impedance	7.159 mΩ	_	7.546 mΩ
Conductor Self-Impedance	1.764 mΩ	2.665 mΩ	-
Mutual-Impedance	_	1.457 mΩ	1.424 mΩ

Table E-15: 3" Stainless-Steel Conduit Impedance Test Results

Table E-16: 1" Stainless-Steel Conduit Impedance Test Results

Test Configuration	(a)	(b)	(c)
Injected Current	64.82 A	170.9 A	65.15 A
Voltage Along Cable	0.217 V	0.716 V	0.125 V
Voltage Along Conduit	1.459 V	0.320 V	1.475 V
Total Circuit Voltage	1.670 V	_	_
Conduit Self-Impedance	22.53 mΩ	_	22.64 mΩ
Conductor Self-Impedance	3.326 mΩ	4.180 mΩ	_
Mutual-Impedance	_	1.861 mΩ	1.860 mΩ